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Summary. A model for active galactic nuclei (AGN) (Kazanas and Ellison 1986a; 

hereafter KE), employing quasi spherical accretion onto a black hole, when 

scaled down to solar mass objects, provides a straightforward account of the 

bimodal spectral behaviour of Cyg X-1 and the other galactic black hole 

candidates. It is argued that the change in the spectrum is due to the 

drastic increase of the source compactness (L/R) with the accretion rate ITI and 

the subsequent conversion of most of the energy released by accretion into e+ 

e' pairs. It is also argued that similar changes may be observed in active 

galactic nuclei. 
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There are by now several accreting X-ray binaries thought to derive their 

luminosity by accretion onto a black hole rather than a neutron star. Such a 

conclusion rests solely on estimates of the mass of the compact object from 

optical observations of the dynamics and the spectral properties of the binary 

system. Thus it was deduced that Cyg X-1 (Webster and Murdin 1972; Bolton 

1972), LMC X-3 (Cowley et a1 1983) and possibly LMC X-1 (Hutchins Crampton and 

Cowley 1983) are black holes. A similar conclusion was recently reached for 

the transient source A0620-00 (McClintock and Remillard 1986) which had an 



outburst in 1975 (Elvis et a1 1975). On the other hand, comparative studies of 

accreting binaries in the X-rays, have indicated certain similarities between 

the spectra of black hole candidates and several other accreting X-ray 

binaries, thus hinting a similar nature for the compact object. The most 

striking such spectral characteristic is the bimodal spectral behaviour 

exhibited by Cyg X-1 (Sanford et a1 1975; Coe, Engel and Quenby 1976). It 

appears that Cyg X-1 emits in two distinct states that are associated with 

and intensity in the .l-10 keV band. The Itlow" state is 

characterized by a power law of energy index a - 0.5 similar to that observed 

in AGN (Rothschild et a1 1983) extending to 100 keV. Above that energy there 

appears to be a roll-off or a break in the spectrum (see fig. 4 of Liang and 

Nolan 1984 and refernces therein). The "high" state is characterized by an 

increased flux in the 1-10 keV band (by a factor 10-30) with a much softer 

spectrum, which can be fitted either with a power law of a - 2-4 or a thermal 
specrtum o f  kT - 1-2 keV, with an indication of a power law tail extending to 
higher energies. It has been thus conjectured (White, Kaluzienski and Swank 

1984; White and Marshall 1984; White Fabian and Mushotzky 1984, hereafter WFM) 

that several other sources which show this spectral bimodal behaviour are also 

related to accretion onto a black hole rather than a neutron star. Besides Cyg 

X-1 these sources are Cir X-1 (Jones 1977), and GX339-4 (Jones 1977; Ricketts 

1982). In addition, the above mentioned X-ray transient A0620-00 (which is now 

known to be a black hole) and the transient A1524-62 (Kaluzienski et a1 1975) 

show the same bimodal behaviour during their rising phase. At low fluxes their 

spectra are hard and similar to that of Cyg X-1 in the low state; as the 

luminosity increases they become significantly softer, quasi-thermal with 

temperature kT - 1-2 keV. The other black hole candidates LMC X-1 and LMC X-3, 
showing always a soft spectrum, appear to be permanently locked in the high 



state. 

To date no satisfactory theoretical interpretation of such a behaviour 

exists, in the sense that it is associated in a coherent fashion to the 

dynamics responsible for the energy release and the emission of radiation. In 

the framework of unsaturated Comptonization (Shapiro, Lightman and Eardley 

1976; Katz 1976; Liang 1980) it is attributed to variations in the 

Comptonization parameter caused either by changes in the accretion disk 

(Shapiro and Lightman 1976), or variations in the flux of soft photons 

(Guilbert and Fabian 1982). More recently, WFM have suggested that the change 

in the spectrum may be due to production of e+ e' pairs in the source. In this 

note we present a simple, straightforward model which produces this bimodal 

spectral behaviour as a result of the dynamics of accretion onto a black hole 

and an ensuing e+ e- cascade as in WFM. This model has been proposed 

originally for the central engine of AGN (KE); however, since in this model, 

the luminosity, the source size and the accretion rate scale linearly with the 

mass of the black hole, the same model should be applicable to solar mass 

black holes in accreting binaries. At present we will review the basic 

concepts and features of the model, referring the reader to KE for more 

detai 1 s. 

The model considers (quasi)spherical accretion and a coll isionless shock 

as a means for randomizing the inflowing kinetic energy. At the same time the 

shock converts, via the first order Fermi shock acceleration, a substantial 

fraction of the energy flux into relativistic protons. The latter, since their 

kinetic energy is much larger than the gravitational potential, resist their 

prompt accretion into the black hole and their energy density can increase 

significantly to self-consistently sustain.. the shock. This i s  possible if the 

nuclear collision time scale tpp (the main energy loss for relativistic 



protons) is longer than the local free-fall time tff. One is thus led to the 

picture of a "relativistic proton radiative shock", whereby the accumulated 

relativistic protons at the base of the flow create a shock at a radius 

R - vff tpp, in analogy with accretion shocks on white dwarfs. The dissipation 
mechanism in this model is therefore well understood and the corresponding 

, is inversely proportional to the ambient density. This time scale, 

latter fact assures that the luminosity, source size and accretion rate scale 

linearly with the mass of the black hole and allows the same model to be 

applied both to QSOs and accreting binary sources (Rees 1984). The basic 

relations o f  the model are shown graphically in figures 4a and 4b of KE where 

the luminosity, F, (in units of LEdd) is given as a function of the 

radius, x, (in units of Rs = 2GM/c2) and as a function of m/M, . (The two 
curves T, = 4 or 1 refer to the upstream temperatures in units of 108 K, a 

typical value as argued in KE). The model also provides the electrons 

necessary to produce the observed radiation as secondaries of nuclear 

collisions, resulting from the decay of ~ " s .  Therefore, since most of the 

energy is injected well above mec2 the model offers the possibility of 

vigorous e+ e- pair production, due to photon-photon collisions in the source. 

This is a most important process in determining the spectrum as it will be 

discussed later. The optical depth of a photon with E - mec2 to this process 
depends mainly on the ratio L/R (called the compactness) of the source and it 

becomes greater than unity for L/R greater than the critical value 

(L/R), - 1029 erg/s/cm. In the dimensionless units of the model the condition 

on L/R reads (F/X,)~ - 2 10-4. One can now show the combined effects of the 

dynamics, i.e. F, and of pair production, i.e. F/x, , as a function of the 
dimensionless accretion rate m/mE (or fi/M,) . These relations are shown in 
figs. la and lb. The most important feature of these figures is the strong 

tPP 



dependence of F and especially of F/x, on th. Changes of only 10%-50% in the 

accretion rate can change the luminosity F by a factor 10 - 30 and the 

compactness F/x, by a factor - 103. As explained in KE this is due to the 

sensitivity of the shock acceleration efficiency on the Mach number of the 

shock. This sensitivity on ITI can then account for the change in luminosity 

from the Irlow" to the "high" states. Similarly, one can see that it is easy 

to lllocklt the source in the high state if th/thE>4 . Assuming the canonical 
value for the mass of the black hole ( - 10 M, ; Webster and Murdin 1972; 

Bolton 1972), the luminosity of 1038 erg/s in the high state suggests F - 0.1, 

while for the ''low1' state F - 3 10-3 - 10-2. These values are shown by the the 

appropriate horizontal lines in fig. 1. The value for the low state is very 

similar to that corresponding to the Seyfert-1 galaxy NGC 4151 as determined 

in KE. The size of the source in the 'Ilow" state (see fig la )  is then R - 100 

Rs - 3 108 cm which implies a variability time scale of 10-2 s in good 

agreement with observation (Meekins et a1 1984). Variability down to 3 ms has 

been reported for Cyg X - 1  by the latter authors and also by Rothschild et a1 

(1974). However, the variability on these time scales is statistically much 

less significant, and also most of the power is in the - 10 ms time scales 
(fig. 3 of Meekins et a1 1984), which is most likely associated with the large 

scale dynamics of the source. Furthermore, it is interesting to note that the 

shot noise model of Meekins et a1 (1984) with decay times between 3.5 ms and 

300 ms is in agreement with the proton acceleration model of KE, if these time 

scales are identified with the p-p collision time scales (eq. (4) of KE) at R 

- 5 Rs and R - 100 Rs respectively. Therefore, in this simple picture, the 

variability is accounted for by the continuous, impulsive injection of 

relativistic protons, (the shots); the decay time of the shots is indicative 

of the density of matter in which these protons interact (producing the 



radiation through hadronic collisions), while most of the power is emitted on 

time scales characteristic of the size of the shock ( -10 ms). Given the 

simplicity of the assumptions involved, such an interpretation appears quite 

satisfactory. Finally, the absense of apparent variability in the state 

may simply mean that a soft comparatively constant component may mask the 

variability of this state (Meekins et al. 1984). 

The spectra of the source in the two different states can also be 

accounted for in terms of the non-thermal particle injection (through pion 

decay) suggested by the model and the ensuing e+ e- pair cascade induced in 

the source. For the IIlow" state, F/X,<(F/X,)~ . This situation has been 

discussed in detail in connection with the spectra of AGNs in the framework of 

non-thermal particle injection (Kazanas 1984; Zdziarski and Lightman 1985). As 

shown in these references, the spectra in the X-ray band should be power laws 

with energy index a - 0.5 breaking at higher energies to a - 1. This is 

consistent with the observed spectrum of Cyg X-1 and the similarity o f  the 

spectra o f  Cyg X-1 and NGC 4151 is naturaly attributed in the similar values 

of F/x, in the two objects. In the "high" state, the increase in the 

luminosity by tenfold, results in an increase of the compactness by - 103 

(fig. la). Because the injection of energetic electrons takes place through 

the hadronic channel, it is unaffected by the increase in the luminosity of 

the source. The drastic change in the spectrum is due to change in the steady 

state distribution function, resulting from the increase in the source 

compactness. Since in this case F/X,>(F/X,)~ , the optical depth of a photon 
of energy E - mecz to y-Y pair production is much greater than one. As a 

result, virtually all the power (injected at Ewnec2) is converted into e+ e' 

pairs. The cooling time of the pairs is shorter than their annihilation time 

scale and the pair distribution develops a pronounced peak at energies - kT << 



met*, while it is a power law of index p = -3 at higher energies (Kazanas 

1984). The cool pair density can then be determined by the balance between 

injection and removal of the cool pairs by annihilation (the fastest removal 

process). The Thomson optical depth of the resulting plasma can then be 

determined from the above considerations and is found to be 

where r is the ratio of the compactness parameter of the source to the 

critical one. As seen in fig 1 , r - 100 for the high state and hence the 

resulting Thomson optical depth should be of the order of 20 - 40. This is 

several orders of magnitude larger than the optical depth of the ambient 

accreting plasma, assuming spherical accretion. The temperature of this plasma 

is determined by demanding that a given luminosity is emitted from a source of 

a given size (determined by the model) and a given optical depth (- 20 - 40). 

For the values corresponding to Cyg X - 1  the temperature is kT - 2 keV, in 

agreement with the observations of the "high" state spectrum. The change in 

the spectrum is therefore due to the conversion of essentially all the 

luminosity into a cool, optically thick pair plasma whose temperature, because 

of the large optical depth, is determined by the thermodynamics of the source. 

This temperature is much lower than that found by Svensson (1984; fig. 6a) for 

plasmas in pair equilibrium. The lowest temperatures derived in the latter 

reference were kT - 0.1 mec2 - 50 keV, while in the present case there does 

not seem to be a lower limit in the temperature of the resulting pair plasma. 

The reason of this, perhaps counterintuitive at first sight, result lies in 

the different energization processes o f  the plasmas in the two cases. While in 

the thermal plasmas the temperature is assumed fixed and the pairs are 



produced by the high energy tails of the thermal electron distributions, in 

the present case the pairs are injected as such through the hadronic channel 

continuously; the resulting temperature is hence allowed to be kT << met*. The 
pairs eventually annihilate and the annihilation photons quickly downscatter 

in energy in the optically thick plasma. Most of the energy is eventually 

emitted in the low energy IIhump" observed in the "high" state of Cyg X-1. The 

observation of an annihilation feature from this plasma is an interesting 

question. WFM argue that such a feature could be observed only if the pairs 

escape slow down and annihilate in a cool medium. Annihilation in the thick 

plasma is smeared by Compton scattering, while annihilation in a wind is 

smeared by Doppler broadening. The conditions for an observable feature might 

be more favourable in the l'lowtl state, since the optical depth is much 

smaller; in this case of however the annihilation emissivity is also smaller 

and the width of the line would be larger because of the higher temperature, 

thus making the detection of such a feature more difficult. (However, Nolan 

and Matteson (1983) suggest that such a broad feature has been observed in the 

HEAO-1 data). Finally, one should bear in mind that a narrow feature has 

indeed been observed from the direction of the galactic center (Leventhal et 

a1 1978). 

The thermodynamics of the source, which determine the temperature of the 

pair plasma, as argued above, scale differently than the dynamics responsible 

for the radiation emission (i.e. proportionally to the mass as shown in KE). 

It is therefore expected that the temperature of the plasma will depend on the 

mass o f  the black hole. Although no precise scaling laws can be derived, in 

general, the temperature will be smaller for the higher mass sources, despite 

the fact that the optical depth to pairs, given by eq (l), depends only on the 

value of F at which the particular source is operating. The dependence of the 



mass is rather weak (e.g. fixing and assuming black body emission T a M' 

6). Estimates of the temperature for sources emitting 1045 - 1047 erg/s 

indicate values ranging from 105 to 107 degrees, depending on the compactness 

of the source. If therefore a similar pair plasma exists in AGN it should 

manifest itself as a quasi thermal component of temperature - lo5 to 107 K. 

Such a feature is known to exist in AGN and QSO. It has actually been 

attributed to emission from the accretion disk of these objects and is known 

as the "UV excess" or "blue bumpm1 (Malkan 1983; Malkan and Sargent 1982). In 

the simple, unified picture presented here, this feature should be due to e+ 

e' pairs and objects with pronounced "bumps" should indicate that these 

objects are locked in the equivalent of the Ithigh" state of Cyg X-1, just like 

LMC X-3 (there exists of course the possibility that both the e+ e' pair 

plasma and an accretion disk contribute to the iibump" emission). This view is 

different from that of WFM who suggest that the equivalent of the "highut state 

in AGN is the BL Lac phenomenon. In principle one should be able to decide 

between the two interpretations (if a single one is correct at all) by 

monitoring the long term spectral behaviour of AGNs. According to the WFM 

conjecture, a increase (decrease) in the luminosity of a Seyfert-1 (BL Lac) 

could possibly turn it into a BL Lac object (Seyfert-1). To the best of the 

aurthor's knowledge no such transitions have been recorded so far. According 

to the conjecture proposed in the present note, and in accordance with the KE 

model, an increase (decrease) in the luminosity should cause the appearance 

(disappearance) of the quasi thermal feature referred to as the "blue bumpm1. 

The author is aware of at least one object (the Seyfert-1 galaxy Fairall 9) 

which behaves qualitatively in the way outlined by the present model. 

Extensive monitoring o f  this object (Morini et a1 1986) has shown that its 

luminosity has been decreasing steadily over the past three years. An apparent 



"blue bump" component was identified in the UV and soft X-rays, along with 

power law components in the optical and hard X-rays. During the overall 

luminosity decrease, the "blue bump" component decreased by a substantially 

larger factor than the non-thermal power law components, as suggested by the 

model (decrease in the bolometric luminosity causes a corresponding decrease 

in the pair content and hence the importance of the quasi thermal feature; 

since however the importance of pairs, which depends on F/x, decreases faster 

than F, which reflects the bolometric luminosity, the importance of the "bump" 

relative to the power law should decrease). 

A final point concerns the application of the model in accreting binaries 

involving neutron stars rather than black holes. Clearly, the dynamics should 

be different because of the existence of the star's magnetosphere, which now 

sets the position of the shock; therefore one would not expect the same 

sensitive dependence of F/x, on ITI and hence the bimodal spectral behaviour 

(a fact consistent with observations). However, the non-thermal energy 

injection arguments and the resulting pair equilibrium should still be valid, 

Interestingly, the spectra of these sources require the existence of two 

components, a black body one (associated with emission from the neutron star) 

and a thin thermal bremsstrahlung component of emission measure n2 R3  - 
1 0 6 0  cm-3 (Swank and Serlemitsos; White et a1 1986). It is interesting that eq 

( l ) ,  despite the simplicity of the arguments used in deriving it, indicates an 

emission measure - 1 0 5 6  cm-3, without any further assumptions. This value is 

actually compatible with that given above, if one considers that in the 

optically thick plasmas considered here the emissivity is higher than the 

bremsstrahlung one and hence the required emission measure should be smaller. 

Clearly, further discussion on this point, though important, is beyond the 

scope of the present note. Finally, the discovery of VHE (1012 eV) and UHE 



( l o 1 5  eV) emission from these objects, are in accord with the arguments of 

acceleration and non-thermal injection presented here and elswhere (e.g. 

Kazanas and El 1 ison 1986b and references therein). 

It is a pleasure to acknowledge discussions with T. Kallman, R. Kelley, 

F. Marshall, J. Meekins and J. Swank. 
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Figure 1. The dimensionless compactness parameter, F/x, , versus (a) the 

Eddington ef f ic iency F and (b) the dimensionless accretion r a t e  m/mE The 

dot-dash l i n e  indicates the c r i t i c a l  compactness, while the dashed l i n e s  the 

Ilhighll and IIlow" states o f  Cyg X - 1  and NGC 4151. 


